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Abstract: Two strings of the same length are order isomorphic if their relative orders are the same.
The order-preserving pattern matching problem is to find all substrings of text T that are order
isomorphic to pattern P when T (|T| = n) and P (|P| = m) are given. An O(mn + nq log q + q!)-time
algorithm using the O(m + q!) space for the order-preserving pattern matching problem has been
proposed utilizing fingerprints of q-grams based on the factorial number system and the bad character
heuristic. In this paper, we propose an O(mn + 2q)-time algorithm using the O(m + 2q) space for
the order-preserving pattern matching problem, but utilizing fingerprints of q-grams converted to
binary numbers. A comparative experiment using three types of time series data demonstrates that
the proposed algorithm is faster than existing algorithms because it reduces the number of order
isomorphism tests.

Keywords: order isomorphism; order-preserving pattern matching; bad character heuristic; finger-
prints

MSC: 68U05; 65Y04

1. Introduction

Two strings of the same length from an integer alphabet Σ are order isomorphic if
their relative orders are the same. For example, strings x = (10, 5, 7) and y = (53, 23, 47)
are order isomorphic because their relative orders are the same as (3, 1, 2). The order-
preserving pattern matching (OPPM) problem is to find all substrings of text T that are
order isomorphic to pattern P when T (|T| = n) and P (|P| = m) over Σ are given. Order-
preserving pattern matching can be used to analyze time series data such as stock indices,
climate data, melodies, and so on [1].

Various algorithms for solving the OPPM problem have been proposed. An algorithm
proposed in [1,2] solves the OPPM problem in O(n + sort(m)) time using the failure
function of the Knuth–Morris–Pratt (KMP) algorithm [3]. An algorithm proposed in [4]
solves the problem in O(mn + nq log q + q!) time using fingerprints for q-grams that consist
of q consecutive characters based on the factorial number system [5,6]. An algorithm
presented in [7] is executed in sublinear time on average using binary encoding. An
algorithm proposed in [8] uses a skip-search approach [9] and the Intel streaming SIMD
extensions (SSE) instruction sets [10]. An algorithm using packed string matching [11,12],
the SSE, and advanced vector extensions (AVX) instruction sets [13,14] was proposed in [15].
OPPM in a tree and a directed acyclic graph instead of a simple string were investigated
in [16]. In [17], the OPPM problem was solved using a filtering method with minimum
(or maximum) values. By generating order-preserving suffix trees in O(n

√
log n) time,

an algorithm presented in [18] searches P in O(m + occ) time, where occ is the number of
substrings of T that are order isomorphic to P.

Our study makes the following contributions:
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• We improve the time and space complexity required to compute the fingerprint. In [4],
the fingerprint of a q-gram based on the factorial number system was computed in
O(q log q) time using the O(q!) space. The OPPM algorithm proposed in this paper
converts the q-gram to a binary number and computes the corresponding fingerprint
in O(q) time using the O(2q) space.

• We propose a fast algorithm by reducing the number of order isomorphism tests.
Algorithms using fingerprints quickly find candidate locations where a pattern may
occur, and they test whether order isomorphism actually occurs at those locations.
The algorithm proposed in this paper improves the actual execution time by reducing
the number of order isomorphism tests using fingerprints for two q-grams.

• We compare the actual execution times of algorithms through various implementations.
The execution times are measured by varying the sizes of q-grams for three types
of real time series data. The results of implementations are analyzed under various
experimental conditions.

The rest of this paper is organized as follows. In Section 2, we define the terms, and
we review previous work. In Section 3, we discuss our new order-preserving pattern
matching algorithm. In Section 4, we present experimental comparisons of the execution
times between the algorithms presented in [4,7] versus the algorithm proposed in this study.
Finally, we conclude the paper in Section 5.

2. Preliminaries

A set of strings of length m over integer alphabet Σ is denoted as Σm. The length of
string x is denoted as |x|, the ith character of x as x[i] (0 ≤ i < |x|), and the substrings of x
from i to j x[i]x[i + 1] . . . x[j] as x[i . . . j] (0 ≤ i ≤ j < |x|). If i = 0, x[i . . . j] is called a prefix
of x; if j = |x| − 1, it is called a suffix of x.

If x[i] ≤ x[j] ⇔ y[i] ≤ y[j] (0 ≤ i, j < |x|) for two strings x and y of the same length,
then x and y are order isomorphic and denoted as x ≈ y [2]. The prefix representation of
string x uses prefix table µx, which is defined as follows [1]:

µx[i] = |{j : x[j] ≤ x[i] for 0 ≤ j < i}|.

That is, µx[i] is the number of characters smaller than or equal to x[i] in x[0 . . . i− 1].
Prefix table µx can be computed in O(|x| log |x|) time using an order-statistic tree. If x ≈ y,
then µx = µy [1]. The nearest neighbor representation of x uses location tables LMaxx and
LMinx, which are defined as follows [1,2]:

LMaxx[i] = j if x[j] = max{x[k] : x[k] ≤ x[i] for 0 ≤ k < i}, and

LMinx[i] = j if x[j] = min{x[k] : x[k] ≥ x[i] for 0 ≤ k < i}.

That is, LMaxx[i] is the location of the largest character j among the characters that
are smaller than or equal to x[i] in x[0 . . . i− 1], and LMinx[i] is the location of the smallest
character j among the characters that are larger than or equal to x[i] in x[0 . . . i− 1]. If there
are two or more such j’s that satisfy this condition, the largest j among them is defined as
LMaxx[i] (or LMinx[i]); if there is no such j, they are defined as −1. LMaxx and LMinx can
be computed in O(|x| log |x|) time using order-statistic trees and can be used to determine
whether x and y are order isomorphic or not in O(|x|) time [1,2]. Table 1 shows prefix table
µx and location tables LMaxx and LMinx for string x = (5, 11, 18, 7, 3, 9).
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Table 1. Prefix table µx and location tables LMaxx and LMinx for x = (5, 11, 18, 7, 3, 9).

i 0 1 2 3 4 5

x[i] 5 11 18 7 3 9

µx[i] 0 1 2 1 0 3

LMaxx[i] −1 0 1 0 −1 3

LMinx[i] −1 −1 −1 1 0 1

The order-preserving pattern matching problem is formally defined as follows.

Problem 1. Order-preserving pattern matching problem.
Input: text T (∈ Σn) and pattern P (∈ Σm).
Output: every position i (m− 1 ≤ i < n) of T where T[i−m + 1 . . . i] ≈ P.

In [4], to apply the bad character heuristic of the Horspool algorithm [19] to OPPM,
the notion of a q-gram and a fingerprint based on a factorial number system were used. A
q-gram consists of q (1 ≤ q < m) consecutive characters, and fingerprint f (x) for q-gram x
converts x into one integer as follows [4]:

f (x) =
q−1

∑
k=0

µx[k] · k!.

For example, when q = 3, prefix table µx of q-gram x = (11, 83, 32) is (0, 1, 1), and
f (x) = (0× 0!) + (1× 1!) + (1× 2!) = 3. The algorithm in [4] consists of two phases,
a preprocessing phase and a search phase. In the preprocessing phase, the shift table
and location tables for P are computed. First, all elements of shift table D are initialized
to maximum moving distance m− q + 1, and then, D is computed using the following
equation:

t = max{i : µP[i− q + 1 . . . i] = µx, q− 1 ≤ i < m− 1},

D[ f (x)] = min(m− q + 1, m− t− 1).

In the search phase, OPPM is performed using the bad character heuristic and the
tables. In the worst case, the algorithm proposed in [4] runs in O(mn + nq log q + q!) time
using the O(m + q!) space.

3. New Order-Preserving Pattern Matching Algorithm

Our new OPPM algorithm runs faster and uses less space than the algorithm in [4].
Our algorithm also consists of two phases like the algorithm in [4]. The main differences
are as follows. First, our algorithm uses a different fingerprint. It converts q-grams into
binary strings and computes the fingerprints for the converted binary strings. Second, our
algorithm uses two fingerprints of q-grams to reduce the number of order isomorphism
tests. In the preprocessing phase, our algorithm converts pattern P into binary string P′

using the method from [7]. It also computes the shift tables for two q-grams and the location
tables for P. In the search phase, it finds all substrings of T that are order isomorphic to P
using the fingerprints for the q-grams of the binary strings and the bad character heuristic.

3.1. Preprocessing Phase

For string x over Σ, binary string x′ (|x′| = |x| − 1) is defined as follows [7]:

x′[i] =
{

1 if x[i] < x[i + 1],
0 otherwise.
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Fingerprint g(w) of q-gram w for binary string x′ is defined as follows:

g(w) =
q−1

∑
k=0

w[k] · 2q−k−1.

For example, when x = (21, 69, 93, 77), binary string x′ converted from x is (1, 1, 0).
When q = 3, w = (1, 1, 0) and g(w) = 1× 22 + 1× 21 + 0× 20 = 6.

In the preprocessing phase, we compute binary string P′ and location tables LMaxP
and LMinP for P. P′ can be computed in O(m) time using the O(m) space by scanning
P. Location tables LMaxP and LMinP for P can be computed in O(m log m) time using
the O(m) space, as explained above. We also compute shift tables D1 and D2 for P′. For
binary string x′, we call x′[|x′| − q . . . |x′| − 1] and x′[|x′| − 2q . . . |x| − q− 1], respectively,
the primary q-gram and the secondary q-gram of x′. For example, when q = 3, as shown in
Figure 1, the primary q-gram and the secondary q-gram of P′ are P′[5 . . . 7] and P′[2 . . . 4],
respectively. First, all the elements of D1 and D2 are initialized to m − q and m − 2q,
respectively, which are the maximum distances that the pattern can move via the two
q-grams. Then, D1 and D2 are computed using the following equations for P′:

aw = max{i : P′[i− q + 1 . . . i] = w, q− 1 ≤ i < m− 2},

D1[g(w)] = min(m− q, m− aw − 1),

bw = max{i : P′[i− q + 1 . . . i] = w, q− 1 ≤ i < m− q− 2},

D2[g(w)] = min(m− 2q, m− bw − 1).

Note that aw and bw are the last positions of the substrings of P′ that match q-gram
w in P′[0 . . . m− 3] and P′[0 . . . m− q− 3], respectively. D1[g(w)] and D2[g(w)] store the
distances that the pattern can move via the primary q-gram and the secondary q-gram,
respectively.

Figure 1. Order-preserving pattern matching using fingerprints of the primary q-gram and the
secondary q-gram when q = 3.

Shift tables D1 and D2 can be computed in O(2q + m) time using the O(2q) space.
Therefore, the preprocessing phase runs in O(2q + m log m) time using the O(2q + m)
space.

3.2. Search Phase

We denote the fingerprint of the primary q-gram of P′ as p1, and we denote the
fingerprint of the secondary q-gram of P′ as p2. That is, p1 = g(P′[m− q− 1 . . . m− 2])
and p2 = g(P′[m − 2q − 1 . . . m − q − 2]). Furthermore, we denote the fingerprint of
the primary q-gram of T′[i − m + 1 . . . i − 1] as t1, and we denote the fingerprint of the
secondary q-gram of T′[i − m + 1 . . . i − 1] as t2. That is, t1 = g(T′[i − q . . . i − 1]) and
t2 = g(T′[i− 2q . . . i− q− 1]). Algorithm 1 shows the pseudocode of our algorithm.

The search phase consists of n−m + 1 steps. In each step i (m− 1 ≤ i < n), we check
whether T[i−m + 1 . . . i] and P are order isomorphic. First, we check whether fingerprints
p1 and t1 are the same (line 9 of Algorithm 1). If p1 6= t1, we shift P forward by D1[t1]
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increasing i by D1[t1] (line 18 of Algorithm 1). If p1 = t1, we compare p2 and t2 (line 11
of Algorithm 1). If p2 and t2 are also the same, we test whether P and T[i − m + 1 . . . i]
are order isomorphic using LMaxP and LMinP in O(m) time. If T[i−m + 1 . . . i] ≈ P, we
report i as an occurrence. Meanwhile, if T[i−m + 1 . . . i] ≈ P, by the definition of the order
isomorphism, p1 = t1 and p2 = t2. Therefore, if p1 6= t1 or p2 6= t2, T[i−m + 1 . . . i] 6≈ P;
hence, we can shift P forward by max(D1[t1], D2[t2]), regardless of whether p2 and t2 are
the same or not (line 15 of Algorithm 1). The search phase runs in O(mn) time in the worst
case because it might test order isomorphism in every step. Thus, the proposed algorithm
solves the OPPM problem in O(2q + mn) time using the O(2q + m) space in total.

Algorithm 1 OPPM algorithm using fingerprints

1: Input: A text T of length n and a pattern P of length m.
2: Output: All positions of the substrings of T that are order isomorphic to P.
3: Compute P′, D1, D2, LMaxP, and LMinP
4: p1 ← g(P′[m− q− 1 . . . m− 2)]
5: p2 ← g(P′[m− 2q− 1 . . . m− q− 2)]
6: i← m− 1
7: while i < n do
8: t1 ← g(T′[i− q . . . i− 1])
9: if p1 = t1 then

10: t2 ← g(T′[i− 2q . . . i− q− 1])
11: if p2 = t2 then
12: if T[i−m + 1 . . . i] ≈ P then
13: print i
14: end if
15: end if
16: i← i + max(D1[t1], D2[t2])
17: else
18: i← i + D1[t1]
19: end if
20: end while

4. Experimental Results

The experimental environment was as follows. The operating system was Windows 10
(64-bit); the CPU was an Intel Core i7-6700 (3.4 GHz); the RAM was 32 GB; the development
tool was Visual Studio 2015; the development language was C++. We used three types
of time series data in the experiment: a power consumption index, particulate matter
(PM2.5) levels, and the Dow Jones Index. The power consumption index consisted of
measurement data on the average voltage per minute of a household in Sceaux, France,
from 00:00 on 16 December 2006 to 22:00 on 2 December 2008 [20]. The PM2.5 levels were
from data recorded in Beijing at one-hour intervals from 00:00 on 2 January 2010 to 22:00
on 9 October 2014 [21]. The Dow Jones Index data were the daily closing prices of the Dow
Jones Industrial Average from 2 May 1885 to 12 April 2019 [22]. Lengths n of text T for
the power consumption index, the PM2.5 levels, and the Dow Jones Index were generated
as 106, 40,000, and 36,000, respectively. Pattern P was generated by extracting strings of
lengths 7, 11, and 15 at random positions of T. For brevity, the power consumption index
data are hereinafter referred to as VOLT, the particulate matter level data are referred to
as PM2.5, and the Dow Jones Index data are indicated as DJIA. The algorithm proposed
in [4] is referred to as OHq, and the algorithm based on SBNDM4 [23] and proposed in [7]
is referred to as S4OPM. The algorithm proposed in this work was implemented in two
versions. The first version was implemented as described in the previous section and is
referred to as OHESq. The second version was implemented using only the fingerprint of
the primary q-gram and is referred to as OHEq.

Table 2 compares the execution times of each algorithm, which are the sums for
executing the algorithm for 1000 patterns and shows the sum of occurrences of all patterns
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in the text. In Table 2, the execution times of the fastest algorithms among the algorithms
using q-grams for each m and q are in bold, and the execution times of the fastest algorithms
regardless of q for each m are marked with an asterisk (∗). With VOLT, OHESq executed
up to approximately 1.98-times faster than OHq (m = 15, q = 6). With PM2.5, OHESq
executed up to approximately 1.97-times faster than OHq or OHEq (m = 15, q = 6).
With DJIA, OHESq executed up to approximately 1.88-times faster than OHq or OHEq
(m = 15, q = 6). In all cases, OHESq executed at least 1.11-times faster than OHq, at least
1.19-times faster than OHEq, and at least 2.42-times faster than S4OPM.

Table 2. Comparison of the execution times and the number of occurrences for VOLT, PM2.5, and
DJIA data (sums for 1000 patterns). Bold indicates the execution times of the fastest algorithms for
each m and q, and the data marked with ∗ indicate the execution times of the fastest algorithms
regardless of q for each m.

Data m Algorithm
Execution Time (Seconds) Number of

q = 3 q = 4 q = 5 q = 6 Occurrences

VOLT

7

OHq 2.756 2.338 3.692 6.835

992,773OHEq 3.052 2.886 3.778 6.822
OHESq 2.098 ∗ · · ·
S4OPM 5.258

11

OHq 2.129 1.301 1.612 2.232

2765OHEq 1.962 1.426 1.356 1.451
OHESq 1.366 1.046 1.030 ∗ ·
S4OPM 2.996

15

OHq 1.941 0.996 1.058 1.355

1001OHEq 2.080 1.176 1.003 0.923
OHESq 1.184 0.791 0.671 ∗ 0.686
S4OPM 2.513

PM2.5

7

OHq 0.119 0.109 0.16 0.28

117,682OHEq 0.128 0.121 0.153 0.281
OHESq 0.089 ∗ · · ·
S4OPM 0.218

11

OHq 0.093 0.063 0.073 0.096

3613OHEq 0.081 0.063 0.058 0.06
OHESq 0.057 0.048 0.043 ∗ ·
S4OPM 0.122

15

OHq 0.084 0.048 0.049 0.059

1020OHEq 0.07 0.045 0.039 0.037
OHESq 0.047 0.034 0.028 ∗ 0.030
S4OPM 0.087

DJIA

7

OHq 0.102 0.09 0.136 0.246

69,054OHEq 0.112 0.107 0.141 0.254
OHESq 0.081 ∗ · · ·
S4OPM 0.196

11

OHq 0.078 0.050 0.061 0.085

1381OHEq 0.073 0.053 0.049 0.055
OHESq 0.051 0.042 0.038 ∗ ·
S4OPM 0.112

15

OHq 0.072 0.038 0.040 0.049

1002OHEq 0.063 0.040 0.033 0.031
OHESq 0.043 0.030 0.026 ∗ 0.026
S4OPM 0.079

Table 3 shows the average number of order isomorphism tests for each m and q of
OHq, OHEq, and OHESq using the bad character heuristic. When comparing OHq and
OHEq, OHq tested for order isomorphism fewer times than OHEq in all cases. This is
because the fingerprints used in [4] based on the factorial number system have a smaller
probability that two fingerprints are identical compared to the fingerprints used in this
paper. Meanwhile, OHESq tested for order isomorphism fewer times than OHEq in all cases
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and fewer times than OHq in most cases. We show the execution times of the preprocessing
phases and search phases of OHq, OHEq, and OHESq for 1000 patterns in Tables A1–A3.

Table 3. Comparison of the average numbers of order isomorphism tests for VOLT, PM2.5, and DJIA
data.

Data m Algorithm
Average Number of

Order Isomorphism Tests

q = 3 q = 4 q = 5 q = 6

VOLT

7
OHq 68,460 23,404 8186 3005

OHEq 56,872 36,608 23,605 15,861
OHESq 15,861 · · ·

11
OHq 51,311 21,718 3676 1037

OHEq 36,729 18,356 10,381 6257
OHESq 10,388 3393 1037 ·

15
OHq 47,110 9603 2440 662

OHEq 31,112 13,148 6591 3587
OHESq 36,065 8527 2336 725

PM2.5

7
OHq 3384 1523 711 367

OHEq 2601 1638 1076 747
OHESq 747 · · ·

11
OHq 2587 914 379 164

OHEq 1737 902 511 306
OHESq 464 162 55 ·

15
OHq 2244 658 263 114

OHEq 1442 663 342 189
OHESq 1480 376 115 39

DJIA

7
OHq 2492 930 366 156

OHEq 2092 1319 855 577
OHESq 577 · · ·

11
OHq 1870 518 171 60

OHEq 1328 664 373 221
OHESq 369 121 37 ·

15
OHq 1742 406 124 40

OHEq 1146 487 243 132
OHESq 1282 305 85 27

5. Conclusions

This study improved the time and space complexity of the previous work on the OPPM
problem by utilizing fingerprints of q-grams converted to binary numbers. Experiments
on three types of time series data showed our algorithm is faster than the previous work
because we reduced the number of order isomorphism tests. We believe the execution times
of OPPM algorithms are highly related to the characteristics of the data, such as permutation
entropy. Therefore, classifying the criteria of data characteristics and identifying the data
according to the criteria can be an important research tasks in the future.
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Abbreviations
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AVX advanced vector extensions
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PM2.5 particulate matter data
DJIA Dow Jones Index data

Appendix A

Table A1. Execution times of 1000 patterns for VOLT data.

Data m Algorithm Phase
Execution Time (s)

q = 3 q = 4 q = 5 q = 6

VOLT

7

OHq
Prep. 0 0 0.002 0

Search 2.756 2.338 3.690 6.835
Total 2.756 2.338 3.692 6.835

OHEq
Prep. 0.001 0 0 0

Search 3.051 2.886 3.778 6.822
Total 3.052 2.886 3.778 6.822

OHESq
Prep. 0.001

Search 2.097 · · ·
Total 2.098

11

OHq
Prep. 0 0 0 0.003

Search 2.129 1.301 1.612 2.229
Total 2.129 1.301 1.612 2.232

OHEq
Prep. 0.001 0.005 0 0.003

Search 1.961 1.421 1.356 1.448
Total 1.962 1.426 1.356 1.451

OHESq
Prep. 0 0 0.002

Search 1.366 1.046 1.028 ·
Total 1.366 1.046 1.030

15

OHq
Prep. 0.001 0.001 0.001 0.003

Search 1.940 0.995 1.057 1.352
Total 1.941 0.996 1.058 1.355

OHEq
Prep. 0.003 0.001 0.003 0.002

Search 2.077 1.175 1.000 0.921
Total 2.080 1.176 1.003 0.923

OHESq
Prep. 0.002 0.002 0.001 0.004

Search 1.182 0.789 0.670 0.682
Total 1.184 0.791 0.671 0.686
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Table A2. Execution times of 1000 patterns for PM2.5 data.

Data m Algorithm Phase
Execution Time (s)

q = 3 q = 4 q = 5 q = 6

PM2.5

7

OHq
Prep. 0 0.002 0.001 0

Search 0.119 0.107 0.159 0.280
Total 0.119 0.109 0.160 0.280

OHEq
Prep. 0 0 0.001 0

Search 0.128 0.121 0.152 0.281
Total 0.128 0.121 0.153 0.281

OHESq
Prep. 0.001

Search 0.088 · · ·
Total 0.089

11

OHq
Prep. 0.001 0.001 0 0

Search 0.092 0.062 0.073 0.096
Total 0.093 0.063 0.073 0.096

OHEq
Prep. 0.001 0.001 0.004 0

Search 0.080 0.062 0.054 0.060
Total 0.081 0.063 0.058 0.060

OHESq
Prep. 0.004 0.001 0.001

Search 0.053 0.047 0.042 ·
Total 0.057 0.048 0.043

15

OHq
Prep. 0 0.001 0.001 0

Search 0.084 0.047 0.048 0.059
Total 0.084 0.048 0.049 0.059

OHEq
Prep. 0.001 0.001 0 0.001

Search 0.069 0.044 0.039 0.036
Total 0.070 0.045 0.039 0.037

OHESq
Prep. 0.001 0.004 0 0

Search 0.046 0.030 0.028 0.030
Total 0.047 0.034 0.028 0.030

Table A3. Execution times of 1000 patterns for DJIA data.

Data m Algorithm Phase
Execution Time (s)

q = 3 q = 4 q = 5 q = 6

DJIA

7

OHq
Prep. 0.001 0 0 0.001

Search 0.101 0.090 0.136 0.245
Total 0.102 0.090 0.136 0.246

OHEq
Prep. 0 0.001 0 0

Search 0.112 0.106 0.141 0.254
Total 0.112 0.107 0.141 0.254

OHESq
Prep. 0.001

Search 0.080 · · ·
Total 0.081

11

OHq
Prep. 0.003 0.001 0.001 0.002

Search 0.075 0.049 0.060 0.083
Total 0.078 0.050 0.061 0.085

OHEq
Prep. 0.001 0.001 0.001 0

Search 0.072 0.052 0.048 0.055
Total 0.073 0.053 0.049 0.055

OHESq
Prep. 0.00 0.002 0

Search 0.050 0.040 0.038 ·
Total 0.051 0.042 0.038



Mathematics 2022, 10, 1954 10 of 10

Table A3. Cont.

Data m Algorithm Phase
Execution Time (s)

q = 3 q = 4 q = 5 q = 6

15

OHq
Prep. 0.001 0.001 0 0.001

Search 0.071 0.037 0.040 0.048
Total 0.072 0.038 0.040 0.049

OHEq
Prep. 0.001 0.002 0 0.001

Search 0.062 0.038 0.033 0.030
Total 0.063 0.040 0.033 0.031

OHESq
Prep. 0.001 0.001 0 0

Search 0.042 0.029 0.026 0.026
Total 0.043 0.030 0.026 0.026
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